Elasticity and mechanical instability of charged lipid bilayers in ionic solutions.

نویسندگان

  • Yotam Y Avital
  • Niels Grønbech-Jensen
  • Oded Farago
چکیده

We use coarse-grained Monte Carlo simulations to study the elastic properties of charged membranes in solutions of monovalent and pentavalent counterions. The simulation results of the two cases reveal trends opposite to each other. The bending rigidity and projected area increase with the membrane charge density for monovalent counterions, while they decrease for the pentavalent ions. These observations can be related to the counterion screening of the lipid charges. While the monovalent counterions only weakly screen the Coulomb interactions, which implies a repulsive Coulomb system, the multivalent counterions condense on the membrane and, through spatial charge correlations, make the effective interactions due to the charged lipids attractive. The differences in the elastic properties of the charged membranes in monovalent and multivalent counterion solutions are reflected in the mechanisms leading to their mechanical instability at high charge densities. In the former case, the membranes develop pores to relieve the electrostatic tensile stresses, while in the latter case, the membrane exhibits large wavelength bending instability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ionic strength and composition govern the elasticity of biological membranes. A study of model DMPC bilayers by force- and transmission IR spectroscopy.

Infrared (IR) spectroscopy was used to quantify the ion mixture effect of seawater (SW), particularly the contribution of Mg(2+) and Ca(2+) as dominant divalent cations, on the thermotropic phase behaviour of 1,2-dimyristoyl-sn-glycero-3-posphocholine (DMPC) bilayers. The changed character of the main transition at 24 °C from sharp to gradual in films and the 1 °C shift of the main transition t...

متن کامل

Charged bilayer membranes in asymmetric ionic solutions: phase diagrams and critical behavior.

We consider the phase separation in an asymmetrically charged lipid bilayer membrane consisting of neutral and negatively charged lipids that are in contact with in and out ionic solutions having different ionic strengths. The two asymmetric leaflets are coupled through electrostatic interactions. Based on a free-energy approach, the critical point and phase diagrams are calculated for differen...

متن کامل

Lipid Bilayer Formation in Aqueous Solutions of Ionic Liquids

The formation of lipid bilayers between ionic liquid droplets is presented as a new means of forming functional bimolecular networks. Ionic liquids are molten salts that have a number of interesting properties, such as the ability to be a liquid at room temperature and exceedingly low vapor pressure. Our research demonstrates that it is possible to consistently and repeatable form lipid bilayer...

متن کامل

Experimental evidence of the electrostatic contribution to membrane bending rigidity

– We have investigated the thermal fluctuations of giant unilamellar dimyristoylphosphatidlycholine vesicles in the presence of both non-ionic and ionic surfactants (peptides) with identical apolar chains. Using vesicle fluctuation analysis, the effects of ionic and non-ionic surfactants upon membrane bending rigidity in the case of no added salt have been determined and the electrostatic contr...

متن کامل

Stabilization of Hydrophilic Pores in Charged Lipid Bilayers by Anisotropic Membrane Inclusions

We present theoretical and experimental evidences on stable pores in in the presence of anisotropic membrane inclusions. The model is based on minimization of free energy which involves three contributions: the energy due to the line tension of the lipid bilayer at the rim of the pore, the electrostatic energy of the charged membrane with the pore, and the energy of anisotropic membrane inclusi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European physical journal. E, Soft matter

دوره 37 8  شماره 

صفحات  -

تاریخ انتشار 2014